ABSTRACT
Sex steroid receptors (SRs) traditionally have been regarded as transcription factors
regulating the expression of target genes. However, alternative mechanisms of signal
transduction have been identified recently. These actions of sex steroids do not require
gene expression or protein synthesis and are independent of the nuclear localization
of the receptors. Indeed, some of these actions are elicited by SRs at the plasma
membrane. In the recent years significant advances have been made in the characterization
of these rapid actions of sex steroids in the vascular system. Prototypical non-genomic
actions of sex steroids at this level include the induction of rapid vasodilatation
as well as anti-inflammatory and antiatherogenic actions. Ubiquitous signaling pathways
traditionally believed to mediate the signals of growth factors or cytokines have
been found to be recruited by sex steroid hormones via their receptors. These include
tyrosine kinases, c-Src, G proteins, phosphatidylinositol 3-OH kinase/Akt, and mitogen-activated
protein kinases. These cascades lead to rapid actions, such as the activation of nitric
oxide synthesis, but are also critical for the regulation of the expression of several
target genes in the nucleus, indicating a tight integration of the non-genomic and
genomic pathways of sex steroid signaling. The understanding of the molecular basis
of the non-genomic actions of sex steroids on the vascular system is important, and
may become relevant for clinical purposes in the future.
KEYWORDS
Sex steroids - sex steroid receptors - non-genomic signaling - vascular system
REFERENCES
- 1
Truss M, Beato M.
Steroid hormone receptors: interaction with deoxyribonucleic acid and transcription
factors.
Endocr Rev.
1993;
14(4)
459-479
- 2
Simoncini T, Genazzani A R.
Non-genomic actions of sex steroid hormones.
Eur J Endocrinol.
2003;
148(3)
281-292
- 3
Mendelsohn M E, Karas R H.
The protective effects of estrogen on the cardiovascular system.
N Engl J Med.
1999;
340(23)
1801-1811
- 4
Adams M R, Kaplan J R, Manuck S B et al..
Inhibition of coronary artery atherosclerosis by 17-beta estradiol in ovariectomized
monkeys. Lack of an effect of added progesterone.
Arteriosclerosis.
1990;
10(6)
1051-1057
- 5
Gilligan D M, Quyyumi A A, Cannon III R O.
Effects of physiological levels of estrogen on coronary vasomotor function in postmenopausal
women.
Circulation.
1994;
89(6)
2545-2551
- 6
Levin E R.
Integration of the extranuclear and nuclear actions of estrogen.
Mol Endocrinol.
2005;
19(8)
1951-1959
- 7
Pietras R J, Szego C M.
Specific binding sites for oestrogen at the outer surfaces of isolated endometrial
cells.
Nature.
1977;
265(5589)
69-72
- 8
Pietras R J, Szego C M.
Partial purification and characterization of oestrogen receptors in subfractions of
hepatocyte plasma membranes.
Biochem J.
1980;
191(3)
743-760
- 9
Valverde M A, Rojas P, Amigo J et al..
Acute activation of Maxi-K channels (hSlo) by estradiol binding to the beta subunit.
Science.
1999;
285(5435)
1929-1931
- 10
Thomas P, Pang Y, Filardo E J, Dong J.
Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer
cells.
Endocrinology.
2005;
146(2)
624-632
- 11
Shupnik M A.
Crosstalk between steroid receptors and the c-Src-receptor tyrosine kinase pathways:
implications for cell proliferation.
Oncogene.
2004;
23(48)
7979-7989
- 12
Chambliss K L, Yuhanna I S, Mineo C et al..
Estrogen receptor alpha and endothelial nitric oxide synthase are organized into a
functional signaling module in caveolae.
Circ Res.
2000;
87(11)
E44-E52
- 13
Somjen D, Kohen F, Gayer B et al..
Role of putative membrane receptors in the effects of estradiol on human vascular
cell growth.
Am J Hypertens.
2004;
17(5 pt 1)
462-469
- 14
Razandi M, Pedram A, Greene G L, Levin E R.
Cell membrane and nuclear estrogen receptors (ERs) originate from a single transcript:
studies of ERalpha and ERbeta expressed in Chinese hamster ovary cells.
Mol Endocrinol.
1999;
13(2)
307-319
- 15
Razandi M, Pedram A, Merchenthaler I, Greene G L, Levin E R.
Plasma membrane estrogen receptors exist and functions as dimers.
Mol Endocrinol.
2004;
18(12)
2854-2865
- 16
Pedram A, Razandi M, Levin E R.
Nature of functional estrogen receptors at the plasma membrane.
Mol Endocrinol.
2006;
20
1996-2009
- 17
Lieberherr M, Grosse B.
Androgens increase intracellular calcium concentration and inositol 1,4,5-trisphosphate
and diacylglycerol formation via a pertussis toxin-sensitive G-protein.
J Biol Chem.
1994;
269(10)
7217-7223
- 18
Benten W P, Lieberherr M, Giese G et al..
Functional testosterone receptors in plasma membranes of T cells.
FASEB J.
1999;
13(1)
123-133
- 19
Kampa M, Papakonstanti E A, Hatzoglou A, Stathopoulos E N, Stournaras C, Castanas E.
The human prostate cancer cell line LNCaP bears functional membrane testosterone receptors
that increase PSA secretion and modify actin cytoskeleton.
FASEB J.
2002;
16(11)
1429-1431
- 20
Somjen D, Kohen F, Gayer B, Kulik T, Knoll E, Stern N.
Role of putative membrane receptors in the effect of androgens on human vascular cell
growth.
J Endocrinol.
2004;
180(1)
97-106
- 21
Revelli A, Massobrio M, Tesarik J.
Nongenomic actions of steroid hormones in reproductive tissues.
Endocr Rev.
1998;
19(1)
3-17
- 22
Welter B H, Hansen E L, Saner K J, Wei Y, Price T M.
Membrane-bound progesterone receptor expression in human aortic endothelial cells.
J Histochem Cytochem.
2003;
51(8)
1049-1055
- 23 Liao J K.
Endothelial nitric oxide and vascular inflammation. In: Panza JA, Cannon ROI Endothelium, Nitric Oxide and Atherosclerosis. Armonk,
NY; Futura Publishing 1999: 119-132
- 24
Chambliss K L, Shaul P W.
Estrogen modulation of endothelial nitric oxide synthase.
Endocr Rev.
2002;
23(5)
665-686
- 25
Goetz R M, Thatte H S, Prabhakar P, Cho M R, Michel T, Golan D E.
Estradiol induces the calcium-dependent translocation of endothelial nitric oxide
synthase.
Proc Natl Acad Sci USA.
1999;
96(6)
2788-2793
- 26
Laufs U, Liao J K.
Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability
by Rho GTPase.
J Biol Chem.
1998;
273(37)
24266-24271
- 27
Garcia-Cardena G, Fan R, Shah V et al..
Dynamic activation of endothelial nitric oxide synthase by Hsp90.
Nature.
1998;
392(6678)
821-824
- 28
Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher A M.
Activation of nitric oxide synthase in endothelial cells by Akt- dependent phosphorylation.
Nature.
1999;
399(6736)
601-605
- 29
Simoncini T, Hafezi-Moghadam A, Brazil D P, Ley K, Chin W W, Liao J K.
Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH
kinase.
Nature.
2000;
407(6803)
538-541
- 30
Simoncini T, Rabkin E, Liao J K.
Molecular basis of cell membrane estrogen receptor interaction with phosphatidylinositol
3-kinase in endothelial cells.
Arterioscler Thromb Vasc Biol.
2003;
23(2)
198-203
- 31
Lu Q, Pallas D C, Surks H K, Baur W E, Mendelsohn M E, Karas R H.
Striatin assembles a membrane signaling complex necessary for rapid, nongenomic activation
of endothelial NO synthase by estrogen receptor {alpha}.
Proc Natl Acad Sci USA.
2004;
101(49)
17126-17131
- 32
Barletta F, Wong C W, McNally C, Komm B S, Katzenellenbogen B, Cheskis B J.
Characterization of the interactions of estrogen receptor and MNAR in the activation
of cSrc.
Mol Endocrinol.
2004;
18(5)
1096-1108
- 33
Edwards D P, Boonyaratanakornkit V.
Rapid extranuclear signaling by the estrogen receptor (ER): MNAR couples ER and Src
to the MAP kinase signaling pathway.
Mol Interv.
2003;
3(1)
12-15
- 34
Ravichandran K S.
Signaling via Shc family adapter proteins.
Oncogene.
2001;
20(44)
6322-6330
- 35
Song R X, McPherson R A, Adam L et al..
Linkage of rapid estrogen action to MAPK activation by ERalpha-Shc association and
Shc pathway activation.
Mol Endocrinol.
2002;
16(1)
116-127
- 36
Wyckoff M H, Chambliss K L, Mineo C et al..
Plasma membrane estrogen receptors are coupled to endothelial nitric-oxide synthase
through Galpha(i).
J Biol Chem.
2001;
276(29)
27071-27076
- 37
Schulz E, Anter E, Zou M H, Keaney Jr J F.
Estradiol-mediated endothelial nitric oxide synthase association with heat shock protein
90 requires adenosine monophosphate-dependent protein kinase.
Circulation.
2005;
111(25)
3473-3480
- 38
Calkin A C, Sudhir K, Honisett S, Williams M RI, Dawood T, Komesaroff P A.
Rapid potentiation of endothelium-dependent vasodilation by estradiol in postmenopausal
women is mediated via cyclooxygenase 2.
J Clin Endocrinol Metab.
2002;
87(11)
5072-5075
- 39
Hermenegildo C, Oviedo P J, Cano A.
Cyclooxygenases regulation by estradiol on endothelium.
Curr Pharm Des.
2006;
12(2)
205-215
- 40
Nakajima T, Kitazawa T, Hamada E, Hazama H, Omata M, Kurachi Y.
17beta-Estradiol inhibits the voltage-dependent L-type Ca2 + currents in aortic smooth
muscle cells.
Eur J Pharmacol.
1995;
294(2-3)
625-635
- 41
White R E, Darkow D J, Lang J L.
Estrogen relaxes coronary arteries by opening BKCa channels through a cGMP-dependent
mechanism.
Circ Res.
1995;
77(5)
936-942
- 42
Zhang M, Benishin C G, Pang P K.
Rapid inhibition of the contraction of rat tail artery by progesterone is mediated
by inhibition of calcium currents.
J Pharm Pharmacol.
2002;
54(12)
1667-1674
- 43
Minshall R D, Pavcnik D, Browne D L, Hermsmeyer K.
Nongenomic vasodilator action of progesterone on primate coronary arteries.
J Appl Physiol.
2002;
92(2)
701-708
- 44
Deenadayalu V P, White R E, Stallone J N, Gao X, Garcia A J.
Testosterone relaxes coronary arteries by opening the large-conductance, calcium-activated
potassium channel.
Am J Physiol Heart Circ Physiol.
2001;
281(4)
H1720-H1727
- 45
Simoncini T, Mannella P, Fornari L, Varone G, Caruso A, Genazzani A R.
Dehydroepiandrosterone modulates endothelial nitric oxide synthesis via direct genomic
and nongenomic mechanisms.
Endocrinology.
2003;
144(8)
3449-3455
- 46
Simoncini T, Mannella P, Fornari L et al..
Differential signal transduction of progesterone and medroxyprogesterone acetate in
human endothelial cells.
Endocrinology.
2004;
145(12)
5745-5756
- 47
Selles J, Polini N, Alvarez C, Massheimer V.
Nongenomic action of progesterone in rat aorta: role of nitric oxide and prostaglandins.
Cell Signal.
2002;
14(5)
431-436
- 48
Lampugnani M G, Dejana E.
Interendothelial junctions: structure, signalling and functional roles.
Curr Opin Cell Biol.
1997;
9(5)
674-682
- 49
Groten T, Pierce A A, Huen A C, Schnaper H W.
17 beta-estradiol transiently disrupts adherens junctions in endothelial cells.
FASEB J.
2005;
19(10)
1368-1370
- 50
Razandi M, Pedram A, Levin E R.
Estrogen signals to the preservation of endothelial cell form and function.
J Biol Chem.
2000;
275(49)
38540-38546
- 51
Simoncini T, Scorticati C, Mannella P et al..
Estrogen receptor {alpha} interacts with G{alpha}13 to drive actin remodeling and
endothelial cell migration via the RhoA/Rho kinase/moesin pathway.
Mol Endocrinol.
2006;
20(8)
1756-1771
- 52
Dos Santos E G, Dieudonne M N, Pecquery R, Le Moal V, Giudicelli Y, Lacasa D.
Rapid nongenomic E2 effects on p42/p44 MAPK, activator protein-1, and cAMP response
element binding protein in rat white adipocytes.
Endocrinology.
2002;
143(3)
930-940
- 53
Gutzman J H, Nikolai S E, Rugowski D E, Watters J J, Schuler L A.
Prolactin and estrogen enhance the activity of activating protein 1 in breast cancer
cells: role of extracellularly regulated kinase 1/2-mediated signals to c-fos.
Mol Endocrinol.
2005;
19(7)
1765-1778
- 54
Kawagoe J, Ohmichi M, Takahashi T et al..
Raloxifene inhibits estrogen-induced up-regulation of telomerase activity in a human
breast cancer cell line.
J Biol Chem.
2003;
278(44)
43363-43372
- 55
Stoica G E, Franke T F, Moroni M et al..
Effect of estradiol on estrogen receptor-alpha gene expression and activity can be
modulated by the ErbB2/PI 3-K/Akt pathway.
Oncogene.
2003;
22(39)
7998-8011
- 56
Pedram A, Razandi M, Aitkenhead M, Hughes C CW, Levin E R.
Integration of the non-genomic and genomic actions of estrogen. Membrane-initiated
signaling by steroid to transcription and cell biology.
J Biol Chem.
2002;
277(52)
50768-50775
- 57
Felty Q.
Estrogen-induced DNA synthesis in vascular endothelial cells is mediated by ROS signaling.
BMC Cardiovasc Disord.
2006;
6
16-22
- 58
Sengupta K, Banerjee S, Saxena N K, Banerjee S K.
Thombospondin-1 disrupts estrogen-induced endothelial cell proliferation and migration
and its expression is suppressed by estradiol.
Mol Cancer Res.
2004;
2(3)
150-158
Tommaso SimonciniM.D. Ph.D.
Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department
of Reproductive Medicine and Child Development
Division of Obstetrics and Gynecology, University of Pisa, Via Roma, 57, 56100, Pisa,
Italy
Email: t.simoncini@obgyn.med.unipi.it